Partlll
Performing Common Tasks

@ Pydoc: Index of Modules - Mozilla Firefox =5 |fcE ===
File Edit View History Bookmarks Teels Help
Pydoc: Index of Modules
a 8 localhost 51467 ¢ 4 & B BE B =2 » =
Python 3.3.4 [v3.3.4.71f62415e426, MSC v.1600 64 bit (AMD64)] 2
Windows-7
Module Index : Topics : Keywords
I_ Get | | Search |
_ast _io thread math

bisect _ison warnings mmap

codecs locale weakref msvert

codecs cn lsprof winapi nt

codecs hk md5 array operator

codecs is02022 multibytecodec atexit parser

codecs jp pickle audioop signal

codecs kr random binascii sYS

codecs tw shai builtins time

collections sha256 cmath winreg b

See an example of how you can named arguments in format strings at
www .dummies .com/extras/beginningprogrammingwithpython.




A W W W WA

In this part . . .

Gain access to Python modules.

Slice and dice strings to meet your output needs.
Create lists of objects you want to manage.

Use collections to organize data efficiently.

Develop classes to make code reusable.




Chapter 10
Interacting with Modules

In This Chapter

Organizing your code

Adding code from outside sources to your application

Locating code libraries on disk

Looking at the library code

Obtaining and reading the Python library documentation

WMBER
‘x&
&

Fe examples in this book are small, but the functionality of the resulting
applications is extremely limited as well. Even tiny real-world applica-
tions contain thousands of lines of code. In fact, applications that contain
millions of lines of code are somewhat common. Imagine trying to work
with a file large enough to contain millions of lines of code — you’d never
find anything. In short, you need some method to organize code into small
pieces that are easier to manage, much like the examples in this book. The
Python solution is to place code in separate code groupings called modules.
Commonly used modules that contain source code for generic needs are
called libraries.

Modules are contained in separate files. In order to use the module, you must
tell Python to grab the file and read it into the current application. The pro-
cess of obtaining code found in external files is called importing. You import a
module or library to use the code it contains. A few examples in the book have
already shown the import statement in use, but this chapter explains the
import statement in detail so that you know how to use it.

As part of the initial setup, Python created a pointer to the general-purpose
libraries that it uses. That’s why you can simply add an import statement
with the name of the library and Python can find it. However, it pays to know
how to locate the files on disk in case you ever need to update them or you
want to add your own modules and libraries to the list of files that Python
can use.



’ 84 Part lll: Performing Common Tasks

The library code is self-contained and well documented (at least in most
cases it is). Some developers might feel that they never need to look at the
library code, and they’re right to some degree — you never have to look at
the library code in order to use it. You might want to view the library code,
though, to ensure that you understand how the code works. In addition, the
library code can teach you new programming techniques that you might
not otherwise discover. So, viewing the library code is optional, but it can
be helpful.

The one thing you do need to know how to do is obtain and use the Python
library documentation. This chapter shows you how to obtain and use the
library documentation as part of the application-creation process.

Creating Code Groupings

It’s important to group like pieces of code together to make the code easier
to use, modify, and understand. As an application grows, managing the code
found in a single file becomes harder and harder. At some point, the code
becomes impossible to manage because the file has become too large for
anyone to work with.

“&N\BEB
Q
<« The term code is used broadly in this particular case. Code groupings can
include:
v Classes

v Functions
v Variables

»* Runnable code

The collection of classes, functions, variables, and runnable code within a
module is known as attributes. A module has attributes that you access by
that attribute’s name. Later sections in this chapter discuss precisely how
module access works.

The runnable code can actually be written in a language other than Python.
For example, it’s somewhat common to find modules that are written in C/C++
instead of Python. The reason that some developers use runnable code is to
make the Python application faster, less resource intensive, and better able to
use a particular platform’s resources. However, using runnable code comes
with the downside of making your application less portable (able to run on
other platforms) unless you have runnable code modules for each platform




Chapter 10: Interacting with Modules 7 85

that you want to support. In addition, dual-language applications can be
harder to maintain because you must have developers who can speak each of
the computer languages used in the application.

The most common way to create a module is to define a separate file contain-
ing the code you want to group separately from the rest of the application.
For example, you might want to create a print routine that an application
uses in a number of places. The print routine isn’t designed to work on its
own but is part of the application as a whole. You want to separate it because
the application uses it in numerous places and you could potentially use the
same code in another application. The ability to reuse code ranks high on the
list of reasons to create modules.

To make things easier to understand, the examples in this chapter use

a common module. The module doesn’t do anything too amazing, but it
demonstrates the principles of working with modules. Open a Python File
window and create a new file named MyLibrary.py. Type the code found
in Listing 10-1 and save it to disk. (This module also appears with the down-
loadable source code as MyLibrary.py.)

Listing 10-1: A Simple Demonstration Module

def SayHello (Name) :
print ("Hello ", Name)
return

def SayGoodbye (Name) :
print ("Goodbye ", Name)
return

The example code contains two simple functions named SayHello () and
SayGoodbye (). In both cases, you supply a Name to print and the func-
tion prints it onscreen along with a greeting for you. At that point, the
function returns control to the caller. Obviously, you normally create more
complicated functions, but these functions work well for the purposes of
this chapter.

Importing Modules

In order to use a module, you must import it. Python places the module code
inline with the rest of your application in memory — as if you had created
one huge file. Neither file is changed on disk — they’re still separate, but the
way Python views the code is different.



’ 86 Part lll: Performing Common Tasks

WMBER
@ﬁ
&

You have two ways to import modules. Each technique is used in specific
circumstances:

v import: You use the import statement when you want to import an
entire module. This is the most common method that developers use
to import modules because it saves time and requires only one line of
code. However, this approach also uses more memory resources than
does the approach of selectively importing the attributes you need,
which the next paragraph describes.

v from. . .import: You use the from. . .import statement when you
want to selectively import individual module attributes. This method
saves resources, but at the cost of complexity. In addition, if you try to
use an attribute that you didn’t import, Python registers an error. Yes,
the module still contains the attribute, but Python can’t see it because
you didn’t import it.

Now that you have a better idea of how to import modules, it’s time to look at
them in detail. The following sections help you work through importing mod-
ules using the two techniques available in Python.

Changing the current Python directory

The directory that Python is using to access This action imports the Python os library.
code affects which modules you can load. The You need to import this library to change
Python library files are always included in the the directory (the location Python sees on
list of locations that Python can access, but disk) to the working directory for this book.
Python knows nothing of the directory you use 3. Type os.chdir("C:\BP4D\Chapter10”) and
to hold your source code unless you tell it to Enter

look there. The easiest method for accomplish- press Enter.

ing this task is to change the current Python You need to use the directory that contains
directory to point to your code folder using the downloadable source or your own proj-
these steps: ect files on your local hard drive. The book

uses the default book directory described in
Chapter 4. Python can now use the down-
You see the Python Shell window appear. loadable source code directory to access
modules that you create for this chapter.

1. Open the Python Shell.

2. Type import os and press Enter.




Chapter 10: Interacting with Modules ’8 7

Using the import statement

The import statement is the most common method for importing a module
into Python. This approach is fast and ensures that the entire module is ready
for use. The following steps get you started using the import statement.
1. Open the Python Shell.
You see the Python Shell window appear.
2. Change directories to the downloadable source code directory.

See the instructions found in the “Changing the current Python directory”
sidebar.

3. Type import MyLibrary and press Enter.

Python imports the contents of the MyLibrary . py file that you created
in the “Creating Code Groupings” section of the chapter. The entire library
is now ready for use.

\&Q,N\BEH It’s important to know that Python also creates a cache of the module
& inthe pycache subdirectory. If you look into your source code
directory after you import MyLibrary for the first time, you see the new
pycache _ directory. If you want to make changes to your module,
you must delete this directory. Otherwise, Python will continue to use
the unchanged cache file instead of your updated source code file.
4. Type dir(MyLibrary) and press Enter.
You see a listing of the module contents, which includes the SayHello ()
and SayGoodbye () functions, as shown in Figure 10-1. (A discussion of
the other entries appears in the “Viewing the Module Content” section of
the chapter.)
74 Python 3.3.4 Shell = lEEs
File Edit Shell Debug Options Windows Help
| =
Pycthon 3.3.4 (v3.3.4:7ff62415e426, Feb 10 2014, 18:13:51) [M5C v __]
Figure 10-1: .1600 64 bit (BMD64)] on win32
A direc- Type "copyright", "credits™ or "license ()" for more information.
. >>> pOXT os
tory lIStmg >>»» og.chdir{"C:\EP4D\Chapterid")
shows that || >>> import MyLibrary
Python >>> dir (MyLibrary)
. ['5ayGoodbye', 'SayHello', ' __builtins ', '__cached ', '__doc_
imports both _'y ' _Tile ', " dinirializing ', ' loader ', "  name ', °
functions || _package ']
fromthe | > | |
module. =
Ln: 8/Col: 4
|




’ 88 Part lll: Performing Common Tasks

Figure 10-2:
The say
Hello()
function
outputs the
expected
greeting.
|

WMBER
‘x&
&

5. Type MyLibrary.SayHello(“Josh™) and press Enter.

The SsayHello () function outputs the expected text, as shown in
Figure 10-2.

74 Python 3.3.4 Shell

File Edit Shell Debug Options Windows Help

'Fyt,l";c:n 3.3.4 (=13.3.4:’?ff62.‘§"_-5e426, Feb 10 2014,
.1600 €4 bic (AMD64)] on win32

Type "copyright™, "credits" or "license ()" for more information.

=5 EcB [

18:13:51) [M5C v ~|

>>> import as
>»>» os.chdir ("C:\BP4D\Chapterli™)
> MyLibrary

>»» dir (MyLibrary)

{'SayGoodbye", 'SayHello', ! __builtins ', '_cached ', '_ doc
=ty *__file ', ' _imitializing ', . lcmder ', ' ‘mame ', °_
_package ']
>>»> MyLibrary.SayHello{"Josh")
Hello Josh
=

Ln: 10/Col: 4

Notice that you must precede the attribute name, which is the say
Hello () function in this case, with the module name, which is
MyLibrary. The two elements are separated by a period. Every
call to a module that you import follows the same pattern.

6. Type MyLibrary.SayGoodbye(“Sally”) and press Enter.
The SayGoodbye ( ) function outputs the expected text.
7. Close the Python Shell.
The Python Shell window closes.

Using the from...import statement

The from. . .import statement has the advantage of importing only the
attributes you need from a module. This difference means that the module
uses less memory and other system resources than using the import state-
ment does. In addition, the from. . . import statement makes the module

a little easier to use because some commands, such as dir (), show less
information, or only the information that you actually need. The point is that
you get only what you want and not anything else. The following steps dem-
onstrate using the from. . . import statement.



Chapter 10: Interacting with Modules 7 89

Figure 10-3:
The
from. ..
import
statement
imports only
the items
that you
specifically
request.
|

1. Open the Python Shell.
You see the Python Shell window appear.
2. Change directories to the downloadable source code directory.

See the instructions found in the “Changing the current Python direc-
tory” sidebar.

3. Type from MyLibrary import SayHello and press Enter.

Python imports the SayHello () function that you create in the “Creating
Code Groupings” section, earlier in the chapter. Only this specific function
is now ready for use.

You can still import the entire module, should you want to do so. The
two techniques for accomplishing the task are to create a list of mod-
ules to import (the names can be separated by commas, such as from
MyLibrary import SayHello, SayGoodbye) or to use the asterisk
(™) in place of a specific attribute name. The asterisk acts as a wildcard
character that imports everything.

4. Type dir(MyLibrary) and press Enter.

Python displays an error message, as shown in Figure 10-3. Python
imports only the attributes that you specifically request. This means
that the MyLibrary module isn’t in memory — only the attributes that
you requested are in memory.

74 Python 3.3.4 Shell [oll= ==
File Edit Shell Debug Options Windows Help

Python 3.3.4 (v3.3.4:7ff62415e426, Feb 10 2014, 18:13:51) [MSC v.1 ;J
600 &4 bit (AMD64)] on win32

Iype "copyright", "credits" or "license ()" for more information.
> i o=

>>> os.chdir{"C:\BP4D\Chapterld™)

>>»> Tfrom MyLibrary wport SayHello

»>>> dir (MyLibrary)

ILn:- 11[Col: 4

5. Type dir(SayHello) and press Enter.

You see a listing of attributes that are associated with the SayHello ()
function, as shown in Figure 10-4. It isn’t important to know how these
attributes work just now, but you’ll use some of them later in the book.



’ 90 Part lll: Performing Common Tasks

7% Python 3.3.4 Shell (=] =)
File Edit Shell Debug Options Windows Help

[Python 3.3.4 (v3.3.4:7££624152426, Feb 10 2014, 18:13:51) [MSC v.1 ~|
600 64 bit (AMD6E4)] on win32
Iype "copyright", "credicts" or "license ()" for more information.

53> Amport os
>>»> os,.chdir{"C:\BPF4
>>»> Trom MyLibrary i
e | >>> dir(MyLibrary)
Traceback (most recernt call last):
Figure10—4: le 11#3>", lire 1, in <module>

Use the
. is not defined
dlr.() >»> dir(SavHello)
function ['. annotations. ', ' call ', ' class ', ' glosare ', ' cod
to obtain |/&_'r '__defaults ', ' delatcr ', ' dict ', ' dir ', ' doc
. . eV mag Y, ' format ', ' ge ', ' ger V., * .getattribure
information j, '__glcﬁls_T '_gr.:’, ':haﬁ_',_'_iEc_‘,_'_kwdefaulc;
aboutthe [|_ ', " _1e ',”' 1t ', ' module ', ' name ', '_me ‘', ' ne
specific w. 'y '__quslname ', " reduce ', '  reduce ex_ ", ' repr ', '
. setatctr ', '__sizeof ', '__str_ ', '__ subclasshook_ ']
attributes '>_>>| = = - = - e
you import. ILn: 13/Cal: 4
6. Type SayHello(“Angie”) and press Enter.
The sayHello () function outputs the expected text, as shown in
Figure 10-5.
74 Python 3.3.4 Shell =lEEs
File Edit Shell Debug Options Windows Help
Python 3.3.4 (v3.3.4:7£f62415e426, Feb 10 2014, 18:13:51) [M5C v.1 ;]
600 64 bit (AMD6E4)] on win32
Type "copyright", "credits" or "license ()" for more information.
3% import oa
>>> os.chdir {"C:\BP4D\{ praxig”
>>»> Irom MyLibrary 1 © SayHello
>>»> dir(MyLibrary)
Traceback (most recent call last):
File "<pyshell#3>", lipe 1, in <module>
My brary
HameError: pame '"¥ylibrary" iz dot defined
I | ..o dir (SayHelle)
Figure10-5: ['__annotations_ ', Y oeaTY ot U SlnEEe: b ‘__closure__', '_cod
g M. b odefanite 0 delmepe. o, V. o8fErR Y, '__dir__', ' doe
The Say o M Yl eg Yy Y- foymat. v, ' ge ', . get ‘., 7. gerattribnce
Hello() || '+ ' _globals ', ' gt ', * hash ', * init ', ' lkwdefaulcs
function bt e Nt AR e Vo omodule 00 cpame Y me e Y pm
w "y ' cualpame: ', ' reduce ', ! reduce ex *, ' ‘repr '; °
noIonger __setatcr ', sizeof ', '_ scr ', '_ subclasshook ']
requires | >>> SayHelle(" an)
Helloc Angie
the module | 7~ -
name. ' I~ e
Ln: 15/Col: 4




Chapter 10: Interacting with Modules 7 9 ’

\x&“\BE” . . . .

& When you import attributes using the from. . . import statement, you
don’t need to precede the attribute name with a module name. This fea-
ture makes the attribute easier to access.

NG/ Using the from. . . import statement can also cause problems. If two
gg‘ attributes have the same name, you can import only one of them. The

import statement prevents name collisions, which is important when
you have a large number of attributes to import. In sum, you must exer-
cise care when using the from. . . import statement.

7. Type SayGoodbye(“Harold”) and press Enter.

You imported only the SayHello () function, so Python knows noth-
ing about SayGoodbye () and displays an error message. The selective
nature of the from. . . import statement can cause problems when you
assume that an attribute is present when it really isn’t.

8. Close the Python Shell.
The Python Shell window closes.

Finding Modules on Disk

In order to use the code in a module, Python must be able to locate the
module and load it into memory. The location information is stored as paths
within Python. Whenever you request that Python import a module, Python
looks at all the files in its list of paths to find it. The path information comes
from three sources:

v Environment variables: Chapter 3 tells you about Python environment
variables, such as PYTHONPATH, that tell Python where to find modules
on disk.

v Current directory: Earlier in this chapter, you discover that you can
change the current Python directory so that it can locate any modules
used by your application.

v+ Default directories: Even when you don’t define any environment
variables and the current directory doesn’t yield any usable modules,
Python can still find its own libraries in the set of default directories that
are included as part of its own path information.

It’s helpful to know the current path information because the lack of a path
can cause your application to fail. The following steps demonstrate how you
can obtain path information:

1. Open the Python Shell.
You see the Python Shell window appear.



192

Part lll: Performing Common Tasks

Figure 10-6:
The sys.
path
attribute
contains a
listing of the
individual
paths for
your system.
|

2. Type import sys and press Enter.
3. Type for p in sys.path: and press Enter.

Python automatically indents the next line for you. The sys.path
attribute always contains a listing of default paths.

4. Type print(p) and press Enter twice.

You see a listing of the path information, as shown in Figure 10-6. Your

listing may be different from the one shown in Figure 10-6, depending on
your platform, the version of Python you have installed, and the Python

features you have installed.

7% Python 3.3.4 Shell EEs
File Edit Shell Debug Options Windows Help
| Python 3.3.4 (v3.3.4:7££62415e426, Feb 10 2014, 18:13:51) [MSC v ;J
.1600 64 bit (AMD64)] on win32

Type "copyright", "credits"™ or "license ()" for more information.

¥»» Import sys
>»>»» for p in sys.path:
print({p)

:\Python33\Lib\idlelib
:\Windows\system32\python33.zip
:\Python33\DLLs

C:\Python33\1lib
C:\Python33
C:\Python33\1lib\site-packages
>>> |
Ln: 15/Col: 4

The sys.path attribute is reliable but may not always contain every path

that Python can see. If you don’t see a needed path, you can always check in

another place that Python looks for information. The following steps show
how to perform this task:

1. Type import os and press Enter.

2. Type os.environ[ ‘PYTHONPATH’].split(os.pathsep) and press Enter.

When you have a PYTHONPATH environment variable defined, you see
a list of paths, as shown in Figure 10-7. However, if you don’t have the
environment variable defined, you see an error message instead.

Notice that both the sys.path and the os.environ[' PYTHONPATH' ]

attributes contain the C:\BP4D\Chapter10 entry in this case.
The sys.path attribute doesn’t include the split () function,



Figure 10-7:
You must
request
informa-
tion about
environment
variables
separately.
|

A\

Chapter 10: Interacting with Modules 7 93

which is why the example uses a for loop with it. However, the os .
environ ['PYTHONPATH'] attribute does include the split () func-
tion, so you can use it to create a list of individual paths.

You must provide split () with a value to look for in splitting a list of
items. The os . pathsep constant (a variable that has one, unchangeable,
defined value) defines the path separator for the current platform so
that you can use the same code on any platform that supports Python.

3. Close the Python Shell.
The Python Shell window closes.

74 Python 3.3.4 Shell [o)fE)ES
File Edit Shell Debug Options Windows Help

Python 3.3.4 (v3.3.4:7ff62415e426, Feb 10 2014, 18:13:51) [MSC v ;J
.1600 €4 bit (AMD64)] on win32

Type "copyright", "credits" or "license ()" for more information.
e MPoOrtT 8Yy3
> oy p in sys.path:

print(p)

\Python33\Lib\idlelib
:\BP4D\Chapterlo

s\ Windows\system32\python33.zip
\Python3 LLs

:\Python33\1lib

:\BPython33
:\Python33\lib\site-packages

e T 08

>>> os.environ('EYTHONE
['C:\\BP4D\\Chapteri0"]
e

yorooooon

pe

ALTH'] .2plit (os.pathsep)

Ln: 19|Col: 4

You can also add and remove items from sys . path. For example, if you want
to add Chapter 9 to the list of modules, you type sys.path.append ("C:\\
BP4D\\Chapter09") and press Enter in the Python Shell window. When
you list the sys.path contents again, you see that the new entry is added.
Likewise, when you want to remove an entry, such as Chapter 9, you type
sys.path.remove ("C:\\BP4D\\Chapter09") and press Enter.

Viewing the Module Content

Python gives you several different ways to view module content. The method
that most developers use is to work with the dir () function, which tells you
about the attributes that the module provides.



194

Part lll: Performing Common Tasks

Look at Figure 10-1, earlier in the chapter. In addition to the SayGoodbye ()
and SayHello () function entries discussed previously, the list has other
entries. These attributes are automatically generated by Python for you.
These attributes perform the following tasks or contain the following
information:

» builtins :Contains a listing of all the built-in attributes that are
accessible from the module. Python adds these attributes automatically
for you.

v _cached__ :Tells you the name and location of the cached file that is
associated with the module. The location information (path) is relative
to the current Python directory.

v _ doc__:Outputs help information for the module, assuming that
you've actually filled it in. For example, if you type os. doc_ and
press Enter, Python will output the help information associated with the
os library.

v file :Tells youthe name and location of the module. The location
information (path) is relative to the current Python directory.

» initializing :Determines whether the module is in the process
of initializing itself. Normally this attribute returns a value of False.
This attribute is useful when you need to wait until one module is done
loading before you import another module that depends on it.

v loader :Outputs the loader information for this module. The
loader is a piece of software that gets the module and puts it into
memory so that Python can use it. This is one attribute you rarely (if
ever) use.

v name :Tells you just the name of the module.

v package__:This attribute is used internally by the import system
to make it easier to load and manage modules. You don’t need to worry
about this particular attribute.

It may surprise you to find that you can drill down even further into the attri-
butes. Type dir(MyLibrary.SayHello) and press Enter. You see the entries
shown in Figure 10-8.

Some of these entries, such as name , also appeared in the module listing.
However, you might be curious about some of the other entries. For example,
you might want to know what  sizeof is all about. One way to get addi-
tional information is to type help(“__sizeof__") and press Enter. You see some
scanty (but useful) help information, as shown in Figure 10-9.



Figure 10-8:
Drill down
asfaras
needed to
understand
the modules
that you use
in Python.
|

Figure 10-9:
Try getting
some help

information

about the
attribute

you want to
know about.
|

7% Python 3.3.4 Shell (S E
File Edit Shell Debug Options Windows Help

'Pythan 3.3.4 (v3.3.4:7ff62415e426, Feb 10 2014, 18:13:51) [MSC v. ;I
1600 €4 bit (AMDG4)] on win32
Iype "copyright"™, "credits"™ or "license ()" for more information.

»>>» import MyLibrary

>>»> dir (MyLibrary)

['SayGoodbye', "SayEelle', ' builtins ', ' cached ', ' doc
s '__f:.le_', ‘_:i_nit::l.aliz:.ng__', '_loade:_', '_name__', ' D

ackage__ "]
>>> dir(MyLibrary.S5ayHello)

['_ -anneorations ', ' call ', ' class ', ' closure ', " co
da: ', ' defaults Y. ' delaccy ' ' diet Y, ' dix ', 4
oc__', '_eq___', '__'fc;:mat__‘, '__ge_', '_'get_', '___getattrlbu
t,e_', '_glnbels_', '_gt._', '_hash_', '_irzit,_', '_kwdefa
wice: o M e Ay U 3 Y, N cmadule M, Y. cpEme Y, Y. che Y,
' _mew ", '_ cualpnsme ', ' reduce ', ' .reduce ex ', ' repr

1, '  sevarer ', ' s=izeof ', ' scr ', ' subclasshook ')
> |

| =)

Ln: 8[Col: 4

4 Python 3.3.4 Shell

File Edit Shell Debug Options Windows Help
'Pyt‘.hnn 3.23.4 [v3.3.4:7ff62415e426, Feb 10 2014, 218:13:51) [MSC v. ;l
1600 64 bit (AMD64)] on win32

Type "copyright™, "credits™ or "license ()™ for more information.

>>>» import MyLibrary

>>> dir (MyLibrary)

['SayGoodbye', 'SayHello', '__bulltl:‘ls_', ‘_cached_', '_cic;c_

Yy "_Tile_ ', ' ipitializing ', '__loader_ ', '_name ", '_p
ackage_ ']

»>>»> dir (MyLibrary.SayHello)

[' .annctacions ', ' cmll ', ' .ciass 7, ' . clasurse ', ' oo
de_', '_defaults_‘, '__d.elat,t.r_‘, '_dlct_', '__d:l.z_', '_d
oc_ ', '_eq ', '__formatr ‘', '_ge_ ', ' get ', '_getattribu
te: 'y ' globals ', '__gt ', ' hash ', ' init ", ' lkwdefa
les: v, ' Te ", M I MG Y wmadule P, 0 CnAme Y, Y Ee Y
"onmey Y, chisdnsme ', ' Fedoce P, T redues syt ', ' pepp

e ¥ _Zefarer ',  sigeor ', ' =g ', '  subdlasshook ]
»oe help{® sizeof ")

Help on built-in function _ sizeof :

_sizeaf (...}
_SJ.ZECf_(} =% int
size of object in memory, in bytes

>>>

Ln: 15/Col: 4

Chapter 10: Interacting with Modules ’ 95




’ 96 Part lll: Performing Common Tasks

Python isn’t going to blow up if you try the attribute. Even if the shell does
experience problems, you can always start a new one. So, another way to
check out a module is to simply try the attributes. For example, if you type
MyLibrary.SayHello.__sizeof__() and press Enter, you see the size of the

SayHello () function in bytes, as shown in Figure 10-10.

4 Python 3.3.4 Shell [ =S
File Edit Shell Debug Options Windows Help
| Python 3.3.4 (v3.3.4:7ff62415e426, Feb 10 2014, 18:13:51) [M5C w. _]
1600 64 bit (AMD64)] on win32
Type "copyright", "credits"™ or "license ()™ for more information.
> MyLibrary
>>»> dir(MyLibrary)
['SayGoodbye', '"SayHello', ' builti L '_cached._', 'mdcc_
Y9 ' _%ile 'y ' initdializing ', '__ loader ', name_ ', '_p
ackage ']
>>»> dir (MyLibrary.S5ayHello)
['_ annotations ', ' call ', ' clams ', ' closure ', ' eco
de ', '_defaults_‘, ' _delattr ', '_dier ', '_dir *, '_d
ec 'y, '_eq ', '_Tormat ', '_ge "; ' .get ', getattribu
te '; ' globals ', ' gt ', ' hash ', ' ini
ules: o . e Mot T ' Y modale Y57 opame Y Y ome
] new_ ", '_quaizame_', '_-:ed:;ce_', '_red—;ce_ex__', __repr
'y '"__sevatty ', ' sizeof ', '__str ', '_ subclasshook ']
— >>> help("__s sty
Help on built-in nction _ sizeof
Figure 10-10:
Using the _S:Lzec:f_( wiaca g
) sizeof_ () => int
atmbUtes Eze of object in memory, in bytes
will help you
get a better >?: MyLibrary.SayHello. sizeof ()
feelforhow | ... |
they work. | -
Ln: 17/Col: 4

Unlike many other programming languages, Python also makes the source
code for its native language libraries available. For example, when you look
see a listing of . py files that you
can open in IDLE with no problem at all. Try opening the os . py library that
and you see the content shown in

into the \Python33\Lib directory, you

you use for various tasks in this chapter,
Figure 10-11.




Chapter 10: Interacting with Modules

Figure 10-11:
Directly
viewing
module

code can
help in
understand-
ing it.
|

\NG
S

4 Python 3.3.4: 0s.py - C:\Python33\Liblos.py =3 o
File Edit Format Run Opti Windows Help

or FOS1X dep

3y3, Errno

rt stat as st
_names = sys.builtin module names
# Note: meore names are added to _ all later.

def exists(name):
name in globals()

i=f _get exports_list (module): ﬂ

Ln: ﬁ;Ctﬂ: 0

Viewing the content directly can help you discover new programming tech-
niques and better understand how the library works. The more time you
spend working with Python, the better you’ll become at using it to build inter-
esting applications.

Make sure that you just look at the library code and don’t accidentally change
it. If you accidentally change the code, your applications can stop working.
Worse yet, you can introduce subtle bugs into your application that will
appear only on your system and nowhere else. Always exercise care when
working with library code.

197



’ 98 Part lll: Performing Common Tasks

Using the Python Module Documentation

You can use the doc () function whenever needed to get quick help. However,
you have a better way to study the modules and libraries located in the Python
path — the Python Module Documentation. This feature often appears as
Module Docs in the Python folder on your system. It’s also referred to as
pydoc. Whatever you call it, the Python Module Documentation makes life a
lot easier for developers. The following sections describe how to work with
this feature.

Opening the pydoc application

Pydoc is just another Python application. It actually appears in the
\Python33\Lib directory of your system as pydoc.py. As with any
other .py file, you can open this one with IDLE and study how it works.
You can start it using the Module Docs shortcut that appears in the
Python folder on your system or by using a command at the command
prompt.

The application creates a localized server that works with your browser to
display information about the Python modules and libraries. So, when you
start this application, you see a command (terminal) window open like the
one shown in Figure 10-12.

Accessing pydoc on Windows

The Windows installation of Python has a prob- 2. Type C:\Python33\python.exe C:\Python33\
lem. When you click Module Docs, nothing Lib\pydoc.py -b and click Next.

happens. Of course, this is a bit disconcerting
because users are apt to feel that something
is wrong with their systems or with Python
itself. It turns out that the shortcut is faulty. To
overcome this problem, you must create anew 3. Type pydoc and click Finish.
shortcut using the following steps:

This command line starts a copy of the
pydoc server so that you can access
module information.

Windows creates a new shortcut for you.
1. Right-click the Desktop and choose Newr> This shortcut allows you to access the
Shortcut from the context menu. module help information that currently

You see the Create Shortcut wizard. doesn‘t work with Python 3.3.4 on Windows.




Figure 10-12:
Starting
pydoc
means
opening a
command
(terminal)
window to
start the
server.
|

WMBER
@&
&

<MBER

Chapter 10: Interacting with Modules 7 99

< pydoc F=8|EoR|=|

Server ready at http:/~slocalhost:51467~
Server commands: [blrowser. [gluit
SEPVEr)

m| »

As with any server, your system may prompt you for permissions. For exam-
ple, you may see a warning from your firewall telling you that pydoc is attempt-
ing to access the local system. You need to give pydoc permission to work with
the system so that you can see the information it provides. Any virus detection
that you have installed may need permission to let pydoc continue as well.
Some platforms, such as Windows, may require an elevation in privileges to
run pydoc.

Normally, the server automatically opens a new browser window for you, as
shown in Figure 10-13. This window contains links to the various modules
that are contained on your system, including any custom modules you create
and include in the Python path. To see information about any module, you
can simply click its link.

The command prompt provides you with two commands to control the
server. You simply type the letter associated with the command and press
Enter to activate it. Here are the two commands:

v b: Starts a new copy of the default browser with the index page loaded.
v q: Stops the server.
When you’re done browsing the help information, make sure that you stop
the server by typing g and pressing Enter at the command prompt. Stopping

the server frees any resources it uses and closes any holes you made in your
firewall to accommodate pydoc.



200 Part lll: Performing Common Tasks

Figure 10-13:
Your
browser
displays a
number of
links that
appear as
part of the
Index page.
|

@ Pydoc: Index of Modules - Wozilla Firefox
Eile Edit Miew History ﬁmm Tocls Help

J Pydoc: Index of Modules %

5 A 8 (€ @®locahost514E7 ¢l ¥ A WwBE A % »
Python 3.3.4 [v3.3.4.71f62415e426, MSC v.1600 64 bit (AMD64)]
Windows-7

Module Indﬂx - Topics : Keywords

[ Get |

Index of Modules

Built-in Modules

_ast _io thread math

bisect _ison warnings mma

codecs locale weakref msvert

codecs cn Isprof winapi nt

codecs hk md arra operator

codecs is02022 multibytecodec atexit parser

codecs jp pickle audioo signal

codecs kr random binascii sYS

codecs fw shai builtins fime

- collections sha256 cmath winreg b8

Using the quick-access links

Refer back to Figure 10-13. Near the top of the page, you see three links.
These links provide quick access to the site features. The browser always
begins at the Module Index. If you need to return to this page, simply click
the Module Index link.

The Topics link takes you to the page shown in Figure 10-14. This page con-
tains links for essential Python topics. For example, if you want to know
more about Boolean values, click the BOOLEAN link. The page you see next
describes how Boolean values work in Python. At the bottom of the page are
related links that lead to pages that contain additional helpful information.

The Keywords link takes you to the page shown in Figure 10-15. What you see
is a list of the keywords that Python supports. For example, if you want to
know more about creating for loops, you click the for link.




Chapter 10: Interacting with Modules 2 0 ’

_ J“"Pydoc: Topics %

oA 8 ;@ I.ocalhost:Sidﬁfa'iop}cs.ﬁlml. v | 4 & BT B % - » =
| Python 3.3.4 [v3 3.4:71162415426, MSC v.1600 64 bit (AMD64)] -
Windows-7
Module Index : Topics : Keywords
|
Figure 10-14:
The Topics
page tells ASSERTION DELETION LITERALS SEQUENCES
ou about ASSIGNMENT DICTIONARIES LOOPING SHIFTING | |
Y : ATTRIBUTEMETHODS DICTIONARYLITERALS MAPPINGMETHODS ~ SLICINGS
essential ATTRIBUTES DYNAMICFEATURES MAPPINGS SPECIALATTF
Python AUGMENTEDASSIGNMENT ELLIPSIS METHODS SPECIALIDEN
topics, such BASICMETHODS EXCEPTIONS MODULES SPECIALMETI
as how BINARY EXECUTION NAMESPACES STRINGMETH
BITWISE EXPRESSIONS NONE STRINGS
Boolean BOOLEAN FILES NUMBERMETHODS ~ SUBSCRIPTS
values work. | i CALLABLEMETHODS FLOAT NUMBERS TRACEBACKS ~
| | L8 4 (3

o oa 8 .--i-"‘.@Img"ml:51‘157fk@yswrds.hlnll Te! 3 & W B %ﬁ. » =

| Python 3.3.4 [v3 3.4 7f162415e426, MSC v. 1600 64 bit (AMD64)]
Windows-7

Module Index : Topics : Keywords
Search

|
Figure 10-15:
The False def if raise
None del import return
Key""p°;g: True el in ty
and else is while
contains as except lambda with
a listing of gsse;t ;ionally zgtnlocal yield
reak for not
keywords s froe &
that Python continue alobal pass
supports.




202 Part lll: Performing Common Tasks

Figure 10-16:
Using Get
obtains
specific
information
abouta
search term.
|

Typing a search term

The pages also include two text boxes near the top. The first has a Get button
next to it and the second has a Search button next to it. When you type a
search term in the first text box and click Get, you see the documentation for
that particular module or attribute. Figure 10-16 shows what you see when
you type print and click Get.

@ Pydoc: built-in function print - Mozilla Firefox [=iErES
File Edit View History Bookmarks Teeols: Help

| Pydoc: built-in function print

B B | € & localhost:51467/get Pkey=print ¢ ¥ & B \f._m e » =
Python 3.3.4 [v3.3.4:71i62415e426, MSC v.1600 64 bit (AMD64)]
Windows-7
Module In_dex : Topics : Keywords ]
Get | Search _I
print{__)
printi{value, ..., sep=* ', end='\n'; fiYe=sys.stdout, flush=False)

PFrinta the wvaluea to a atream, or to sys.stdout by defanlt.
Optional keyword arguments:
file: a file-like object (stream):; defaults to the current sys.stdout.

sep: 1g inserted between wvalues, default a space.
end: g appended afrer the iast value, default a newline.
flush: whether to forcibly flush the stream.

When you type a search term in the second text box and click Search, you
see all the topics that could relate to that search term. Figure 10-17 shows
typical results when you type print and click Search. In this case, you click a
link, such as calendar, to see additional information.



Chapter 10: Interacting with Modules 2 03

Eile Edit View History Bookmarks Tools Help.
)': Pydoc: Search Results \
oA 8 (-r @ localhost: 51467/searchPkey=print ¢l A BB %_ﬁ- » =

Python 3.3.4 [v3.3.4. 711624156426, MSC v.1600 64 bit (AMD64)] 2
Windows-7

Module Index : Topics : Keywords

et

Search Results

I calendar- Calendar printing functions
- . email guoprimime- Quoted-printable content transfer encoding per RFCs 2045-2047.
Figure 10'_17' encodings.quopri_codec- Codec for quoted-printable encoding.
Using json.tool- Command-line tool to validate and pretty-print JSON
Search lib2to3 fixes fix_print- Fixer for print.
obtains a pprint- Support to pretty-print lists, tuples, & dictionaries recursively.

pstats- Class for printing reports on profiled python code.

list of topics quopri- Conversions to/from quoted-printable fransport encoding as per RFC 1521,
abouta test test pprint L
search term. test test print- Test correct operation of the print function.
— ‘traceback- Extract, format and print information about Python stack traces. -

Viewing the results

The results you get when you view a page depends on the topic. Some topics
are brief, such as the one shown in Figure 10-16 for print. However, other
topics are extensive. For example, if you were to click the calendar link in
Figure 10-17, you would see a significant amount of information, as shown in
Figure 10-18.

In this particular case, you see related module information, error information,
functions, data, and all sorts of additional information about the calendar
printing functions. The amount of information you see depends partly on the
complexity of the topic and partly on the amount of information the devel-
oper provided with the module. For example, if you were to select MyLibrary
from the Module Index page, you would see only a list of functions and no
documentation at all.



2 04 Part lll: Performing Common Tasks

) j Pydoc: module calendar ."\_ _
o oa 8 (- @ localhost 51467/calendar html ¢l 4 A WA % % ==

E Python 3.3.4 [v3.3.4:7162415e426, MSC v.1600 64 bit (AMDG4)]
Windows-7

Module Index : Topics : Keywords

| Get | [ Search |

Calendar printing functions

Note when comparing these calendars to the ones printed by cal(l): By
default, these calendars have Monday as the first day of the week, and
Sunday as the last (che European convention). Use secfirscweskday() to
zet the first day of the week (0=Monday, &=Sunday).

Figure 10-18:
Some pages locale datefime sys
contain
extensive
information.
|

 builtins ValueError(builtins Exception) %




